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The research study voyage commences with the foundational objective of fitting a suitable 
Generalized Autoregressive Conditional Heteroscedastic (GARCH) model to assess market 
volatility, a fundamental pillar of financial analysis. This research embarks on an ambitious 
quest to predict and understand stock market volatility within the realms of the DJIA and 
S&P 500 of USA and ATX index of Austria using different sophisticated GARCH models. The 
dataset used in this study comprises daily stock market data for two key indices: the S&P 
500 Index, representing the USA stock market, and the ATX Index, representing the Austria 
stock market. Additionally, the DJIA Index, another representative of the USA stock market, 
was included. The dataset consists of 5967 daily observations over the specified time period 
from January 3, 2000, to September 21, 2023. The observation of results, analysis and 
discussion depicts that PARCH model shows most promising results and found suitable to 
model the volatility patterns of the selected indices. The findings and methodologies 
presented in this paper can be seen as a solid foundation upon which to build future 
investigations, refining our ability to anticipate market movements and make informed 
decisions in an uncertain financial landscape. In closing, this research not only contributes 
to the body of knowledge in financial econometrics but also underscores the importance of 
modeling long-term stock market behavior with precision and diligence. 
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1. Introduction 

The global financial landscape is a multifaceted and dynamic realm, where fortunes are made and lost 
in the blink of an eye. At the heart of this intricate ecosystem lie the stock markets, which serve as barometers 
of economic health, vehicles for wealth creation, and arenas of relentless speculation(Davis, 2009)(Lawrence 
& Buller, 2022). Within this volatile arena, the concept of stock market volatility stands as a paramount 
determinant of investment decisions, risk management strategies, and the broader economic outlook (Knight, 
1998)(Langley, 2008)(Chava & Purnanandam, 2010)(Habib et al., 2018)(Kakran et al., 2023). In this research 
paper, we embark on a profound journey into the world of financial markets, with a particular focus on three 
influential indexes: the Dow Jones Industrial Average (DJIA) and the S&P 500 Index, representing the United 
States, and the ATX Index, reflecting the Austrian economy. Our overarching objective is to dissect and predict 
stock market volatility with precision and depth, employing advanced models including Threshold GARCH, 
Exponential GARCH (EGARCH), and Power ARCH (PARCH) models(Engle, 2002). Our pursuit is driven by a 
fundamental desire to address key questions and unlock insights that can shape the decisions of investors, 
analysts, and policymakers (Liu et al., 2021). 

The research study voyage commences with the foundational objective of fitting a suitable Generalized 
Autoregressive Conditional Heteroscedastic (GARCH) model to assess market volatility, a fundamental pillar of 
financial analysis. The DJIA and S&P 500 are not just icons of the American financial landscape but also global 
benchmarks (Lim et al., 2013)(Chen et al., 2016)(Novotný & Jaklová, 2021). The ATX Index, representing 
Austria's economic endeavors (Samitas et al., 2022), adds a unique dimension to our analysis. By utilizing 
GARCH models, we aim to distill the intricate essence of these indexes' volatility patterns, providing 
stakeholders with a profound understanding of the risks and opportunities that shape market dynamics (Mun, 
2010). Our pursuit of this objective is rooted in the recognition that stock market volatility is not an ephemeral 
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notion but a dynamic, quantifiable phenomenon that plays a pivotal role in shaping investor sentiment and 
market behavior (Fabozzi et al., 2006). 

Beyond the rudimentary assessment of volatility, our research extends its reach to unravel the 
tapestries of volatility patterns that cloak these financial markets. We acknowledge that volatility is not a 
uniform entity; it unfolds in complex, asymmetric ways, responding differently to positive and negative 
shocks(Vogl, 2022). This recognition prompts us to employ both symmetric and asymmetric models, such as 
EGARCH and PARCH, to delve into the intricate volatility patterns within the USA and Austria stock markets. 
Through this multifaceted approach, we aspire to unearth the latent dynamics that underlie market turbulence. 
Our intent is clear: to equip investors and analysts with a more nuanced view of volatility that transcends 
simplistic metrics and provides actionable insights into market behavior (Seetharam, 2022). 

The study also sets sail on a quest to explore the impact of leverage within the daily return series of 
these stock markets. Leveraging is a phenomenon where volatility exhibits a disproportionate response to 
negative shocks compared to positive ones (Fornari & Mele, 1997)(Aymanns & Farmer, 2015)(Bollerslev et al., 
2020). It is a phenomenon that can magnify risks and create opportunities(Burg et al., 2022). By utilizing 
asymmetric models that excel at capturing leverage effects, we aim to discern their presence and 
magnitude(Singh & Singh, 2017)(Hope & Wang, 2018)(Chalissery et al., 2022)(P. Kumar et al., 2022). This 
exploration is pivotal in enhancing our understanding of the risk profiles associated with the DJIA, S&P 500, 
and ATX indexes, enabling more informed risk management strategies and investment decisions. 

The final destination within this research endeavor is the evaluation of the GARCH family models' 
suitability for capturing essential details regarding index returns and fits. The GARCH family comprises a 
spectrum of models, each with its own unique characteristics and assumptions(Bauwens et al., 2006)(Francq 
& Zakoian, 2019). By meticulously comparing these models and their performance within the context of our 
chosen indexes, we endeavor to identify which model, or combination thereof, best aligns with the intricacies 
of each index's return data(Weber & Zhang, 2012). This evaluation serves as a critical compass for ensuring 
that our modeling approach accurately captures volatility, offering insights that are both robust and 
actionable(Kwok, 2021). 

This research also embarks on an ambitious quest to predict and understand stock market volatility 
within the realms of the DJIA, S&P 500, and ATX indexes. Our findings, driven by a multifaceted approach and 
advanced modeling techniques, seek to illuminate the path ahead for investors, analysts, and policymakers. By 
addressing fundamental questions and unlocking insights, we contribute to the body of knowledge that 
underpins financial decision-making in an ever-evolving global economy. Our journey into the intricate world 
of stock market volatility promises to enrich our comprehension and empower those who navigate the 
unpredictable seas of financial markets. 

 
2. Review of literature 

The GARCH family model has been used in numerous studies all over the world to investigate stock 
market behavior and volatility trends. Such as GJR-GARCH, EGARCH, M GARCH, GARCH (1,1), TGARCH and 
PGARCH. These studies also concluded that which GARCH family model is most perfect GARCH model. (S. 
Kumar, Meher, Birau, Simion, Anand, et al., 2023)EGARCH, TGARCH, MGARCH and PGARCH models used in this 
study to test the volatility of S& P / Toronto index. This paper concluded that the GARCH-GJR is more 
appropriate model. (S. Kumar, Meher, Birau, Simion, Ion, et al., 2023)GARCH (1,1), GJR-GARCH,EGARCH, M 
GARCH, and TGARCH models are used in this study to measures the volatility IBOVESPA index.Apart from that 
this study evaluated the accuracy of volatility forecasts using both univariate and multivariate 
models.(Maqsood et al., 2017)GARCH-M (1,1), EGARCH (1,1), TGRACH (1,1), and PGARCH (1,1) used in this 
study to measures the volatility of Nairobi securities exchange. They came to the conclusion that TGARCH (1,1) 
model is better suitable in terms of capturing the volatility clustering and leverage impact of the NSE stock 
market out of various symmetric and asymmetric type heteroscedastic processes.(S. Kumar, Anand, et al., 
2023)This work analyses conditional variance objectively or empirically estimates the price volatility spillover 
transmission in the daily returns of IPC Mexico index from Mexico stock market using the GJR- GARCH 
model.(Leite & Lima, 2023)revealed the extreme volatility of the spot price in Brazil. Institutional issues and 
the rising proportion of renewable energy in the electrical mix are linked to this high volatility.(Birau et al., 
2023)It was found that the GARCH (1, 1) model's perfect fit, which takes into account the impacts of GARCH 
and ARCH, shows that the volatility in the Sweden market has persisted throughout time. (Bonga, 2019)The 
volatility of the Zimbabwean stock market is modeled using GARCH family. It was found that the EGARCH(1,1) 
is the best model.(Cristi et al., 2022)Observed volatility during the COVID-19 pandemic has been demonstrated 
to form a “V” shape pattern where an unpredictable, sharp negative slope is generated. This was entirely 
different from the pattern created during the global financial crisis.(Bonga, 2019)concluded that both positive 
and negative shocks affect stock market returns differently. Both positive and negative news will boost the 
volatility of stock market returns, but to varying degrees.(Sokpo et al., 2017)The study also discovered that the 
model series had high persistence, meaning that a positive or negative shock to the stock market return series 
caused by either good news or bad news will have a long-lasting impact on the market.(Cristi et al., 2023)The 
negative effects of the global financial crisis have made it clear that the Poland stock market did not provide 
investors any worthwhile profits. Furthermore, adverse shocks occur more frequently than favorable 
ones.(Bonga, 2019)Concluded that there is positive relationship exists between Volatility & risks and returns. 
The financial market becomes increasingly unstable as market volatility increases. (Meher et al., 
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2020)Investigated the market volatility during the COVID-19 pandemic. The adverse information, however, 
has far stronger ramifications. 

 
3. Research Gap 

The study addresses a critical research gap in the field of financial econometrics. While extensive 
research has been conducted on stock market volatility prediction, limited attention has been given to 
comparative analysis and modeling of volatility in the USA and Austria. Moreover, the utilization of advanced 
GARCH models, such as TGARCH, EGARCH, and PARCH, in this context remains relatively unexplored. By 
bridging this gap, our research contributes to a deeper understanding of the unique dynamics and asymmetric 
volatility patterns within these two distinct markets, offering valuable insights for investors, policymakers, and 
financial analysts. 
 
4. Objectives of the Study  

 To fit a suitable GARCH model to assess market volatility based on the DJIA index and S&P 500 Index 
of USA and ATX Index of Austria.  

 To investigate the volatility pattern of indices of USA and Austriastock market using symmetric and 
asymmetric models.  

 To assess the presence of leverage effect in stock market volatility and modelling with asymmetric 
GARCH model that could depict such effect. 

 To assess the suitability of Generalized Autoregressive Conditional Heteroscedastic (GARCH) family 
models, which better capture key details regarding index returns and fits.  

 
5. Research Methodology 

The research methodology employed in this empirical study is outlined in this section. The primary 
objective of this research is to model the behavior of stock markets in the USA and Austria while focusing on 
capturing changes, volatility clusters, assessing the fitness of econometric models, and identifying volatility 
patterns. To achieve this, we utilized data spanning from January 3, 2000, to September 21, 2023. 
Data Collection: 

The dataset used in this study comprises daily stock market data for two key indices: the S&P 500 
Index, representing the USA stock market, and the ATX Index, representing the Austria stock market. 
Additionally, the DJIA Index, another representative of the USA stock market, was included. The dataset 
consists of 5967 daily observations over the specified time period, and it is essential to note that the volatility 
assessment was performed on the basis of daily returns. The daily returns were calculated using the log of the 
first difference of the daily closing prices. 
 
Model Selection: 

To model the volatility of these stock market indices, we employed GARCH (Generalized 
Autoregressive Conditional Heteroskedasticity) models as introduced by Bollerslev in 1986. Specifically, we 
employed three well-known asymmetric volatility models: TGARCH (Threshold GARCH), EGARCH 
(Exponential GARCH), and PARCH (Power ARCH). These models were selected due to their ability to capture 
asymmetry in volatility, which is often observed in financial time series data. 
 
Stationarity Testing: 

Before applying the GARCH models, it is crucial to ensure that the data is stationary. To assess 
stationarity, we employed several statistical tests. The Autocorrelation Function Plot was used to visualize the 
autocorrelation in the data, while the Augmented Dickey Fuller test and Phillips-Perron test were conducted to 
formally assess stationarity. These tests are essential to ensure that the time series data meet the necessary 
assumptions for GARCH modeling. 
 
Model Estimation: 

To estimate the GARCH models (TGARCH, EGARCH, and PARCH), we utilized the E-Views 12 
Econometrics package. This software package provides robust tools for econometric modeling and time series 
analysis. The ARCH Lagrange Multiplier (LM) test was employed to investigate the presence of 
heteroscedasticity in the residual series of the return data. Identifying heteroscedasticity is crucial in choosing 
the appropriate GARCH model. 
 
 
 
Model Evaluation: 

The selection of the most suitable GARCH model was based on the evaluation of three GARCH family 
models: GARCH/TARCH, EGARCH, and PGARCH, all using the Student t's Distribution. The choice of the best 
model was made considering the model's goodness-of-fit, diagnostic tests, and the ability to capture the specific 
characteristics of the volatility in the stock market data. 

This research methodology involved the collection of daily stock market data for the USA and Austria, 
the application of GARCH models, rigorous stationarity testing, and careful model selection and evaluation. 
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These steps were essential to accurately capture and model the volatility patterns and changes in the selected 
stock market indices, providing valuable insights into their behavior over the study period. 
 
6. Empirical Results and Discussion 

In this paper, the daily closing prices of the S&P 500 index, DJIA indexand ATX index over the period 
from 03 January 2000 to 21 September 2023 resulted in total observations of 5967 excluding public holidays. 
Various descriptive statistics are calculated and exhibited in Table 1.1 providing 0.000164, 0.000184, and 
0.000183mean with 0.014301, 0.011830 and 0.012424 degree of Standard Deviation. A high value of kurtosis 
12.25556, 15.63380 and 13.23124 which is greater than 3 indicates a leptokurtic distribution that is an 
apparent departure from normality while the skewness represents negative value it indicating data has long 
left skewed distribution.  

The Jarque-Bera statistic is a crucial normality test, the p-value of JarqueBera is less than its critical 
value of 5% signifying the data is non-normal. 
 

Table No. 1.1 - Descriptive Statistics of GARCH model 
 DJIA_LOG_RETURNS ATX_INDEX_LOG_RETURNS S_P_500_INDEX_LOG_RETURNS 

 Mean  0.000184  0.000164  0.000183 
 Median  0.000485  0.000698  0.000566 
 Maximum  0.107643  0.120210  0.109572 
 Minimum -0.138418 -0.146745 -0.127652 
 Std. Dev.  0.011830  0.014301  0.012424 
 Skewness -0.368236 -0.569262 -0.375929 
 Kurtosis  15.63380  12.25556  13.23124 
 Jarque-Bera  39818.59  21620.84  26166.18 
 Probability  0.000000  0.000000  0.000000 
 Sum  1.098550  0.979570  1.090410 
 Sum Sq. Dev.  0.834987  1.220213  0.920843 
 Observations  5967  5967  5967 

Source: Authors’ Calculation using Eviews12 
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Graph 1.1: Movement Pattern of DJIA Index, ATX Index and S&P 500 Index 

Source: Authors’ Calculation using Eviews12 
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Graph 1.2: log returns of DJIA Index, ATX Index and S&P 500 Index 

Source: Authors’ Calculation using Eviews12 
 
Graph 1.1 shows the movement patterns of the DJIA, ATX and S&P 500 Indexes’ Stationary Series 

during the hypothetical period from 03 January 2000 to 21 September 2023. Graph 1.2 shows the graphical 
presentation of the log returns of the presence of volatility clustering using the DJIA Index, ATX Index and S&P 
500 Index. In order to estimate the volatility of USA and Austria stock market, checking the stationary is the 
first step in the analysis of the return series(Maqsood et al., 2017). For this purpose, Autocorrelation Function 
Plot (ACF Plot), Augmented Dickey-Fuller (ADF)(Dickey & Fuller, 1979)test and Phillips Perron (PP) 
test(Phillips & Perron, 1988) are usedto establish the stationarity of the DJIA, ATX and S&P 500 index sample 
data series. The test results are presented with the help of following tables: 

 
Table: 1.2 Autocorrelation FunctionPlotof djia Index 

       
Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       
              *|      |        *|      | 1 -0.104 -0.104 64.025 0.000 

        |      |         |      | 2 0.009 -0.002 64.527 0.000 
        |      |         |      | 3 0.019 0.020 66.782 0.000 
        |      |         |      | 4 -0.022 -0.018 69.644 0.000 
        |      |         |      | 5 -0.011 -0.016 70.394 0.000 
        |      |         |      | 6 -0.046 -0.049 82.856 0.000 
        |      |         |      | 7 0.044 0.035 94.235 0.000 
        |      |         |      | 8 -0.031 -0.023 100.16 0.000 
        |      |         |      | 9 0.042 0.038 110.82 0.000 
        |      |         |      | 10 -0.009 -0.004 111.26 0.000 
        |      |         |      | 11 -0.014 -0.015 112.43 0.000 
        |      |         |      | 12 0.037 0.032 120.82 0.000 
        |      |         |      | 13 -0.020 -0.008 123.17 0.000 
        |      |         |      | 14 0.004 -0.001 123.28 0.000 
        |      |         |      | 15 -0.062 -0.059 146.24 0.000 
        |      |         |      | 16 0.068 0.055 174.20 0.000 
        |      |         |      | 17 -0.014 -0.000 175.43 0.000 
        |      |         |      | 18 -0.037 -0.036 183.79 0.000 
        |      |         |      | 19 -0.004 -0.020 183.87 0.000 
        |      |         |      | 20 -0.001 0.001 183.88 0.000 
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Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       
               |      |         |      | 21 -0.015 -0.020 185.20 0.000 

        |      |         |      | 22 -0.013 -0.007 186.19 0.000 
        |      |         |      | 23 0.011 0.000 186.90 0.000 
        |      |         |      | 24 -0.010 -0.005 187.45 0.000 
        |      |         |      | 25 -0.012 -0.017 188.34 0.000 
        |      |         |      | 26 -0.013 -0.019 189.36 0.000 
        |      |         |      | 27 0.029 0.033 194.28 0.000 
        |      |         |      | 28 -0.010 -0.009 194.87 0.000 
        |      |         |      | 29 0.011 0.010 195.61 0.000 
        |      |         |      | 30 -0.001 -0.003 195.62 0.000 
        |      |         |      | 31 -0.021 -0.014 198.33 0.000 
        |      |         |      | 32 0.002 -0.009 198.35 0.000 
        |      |         |      | 33 -0.014 -0.014 199.58 0.000 
        |      |         |      | 34 -0.044 -0.046 211.27 0.000 
        |      |         |      | 35 0.009 0.003 211.74 0.000 
        |      |         |      | 36 0.027 0.022 216.19 0.000 

       
       Source: Authors’ Calculation using Eviews12 

 
Table: 1.3 Autocorrelation Function of ATX Index 

Included observations: 5967 after adjustments  
Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       
               |      |         |      | 1 0.065 0.065 24.969 0.000 

        |      |         |      | 2 0.009 0.005 25.503 0.000 
        |      |         |      | 3 -0.003 -0.004 25.565 0.000 
        |      |         |      | 4 -0.014 -0.014 26.716 0.000 
        |      |         |      | 5 0.005 0.007 26.873 0.000 
        |      |         |      | 6 -0.020 -0.020 29.156 0.000 
        |      |         |      | 7 0.035 0.037 36.316 0.000 
        |      |         |      | 8 -0.004 -0.009 36.420 0.000 
        |      |         |      | 9 -0.008 -0.008 36.815 0.000 
        |      |         |      | 10 0.005 0.005 36.948 0.000 
        |      |         |      | 11 -0.009 -0.009 37.452 0.000 
        |      |         |      | 12 0.007 0.007 37.736 0.000 
        |      |         |      | 13 0.015 0.016 39.066 0.000 
        |      |         |      | 14 0.007 0.003 39.333 0.000 
        |      |         |      | 15 0.018 0.017 41.211 0.000 
        |      |         |      | 16 0.005 0.004 41.360 0.000 
        |      |         |      | 17 0.006 0.005 41.566 0.001 
        |      |         |      | 18 -0.029 -0.028 46.432 0.000 
        |      |         |      | 19 0.024 0.029 49.954 0.000 
        |      |         |      | 20 0.020 0.016 52.257 0.000 
        |      |         |      | 21 0.014 0.013 53.509 0.000 
        |      |         |      | 22 0.018 0.015 55.550 0.000 
        |      |         |      | 23 -0.043 -0.044 66.593 0.000 
        |      |         |      | 24 -0.009 -0.005 67.118 0.000 
        |      |         |      | 25 0.059 0.065 88.102 0.000 
        |      |         |      | 26 0.020 0.010 90.413 0.000 
        |      |         |      | 27 -0.023 -0.029 93.548 0.000 
        |      |         |      | 28 -0.035 -0.032 100.90 0.000 
        |      |         |      | 29 0.016 0.019 102.43 0.000 
        |      |         |      | 30 0.016 0.017 103.90 0.000 
        |      |         |      | 31 0.001 0.001 103.91 0.000 
        |      |         |      | 32 0.000 -0.007 103.91 0.000 
        |      |         |      | 33 0.000 0.000 103.91 0.000 
        |      |         |      | 34 -0.029 -0.029 108.89 0.000 
        |      |         |      | 35 -0.025 -0.020 112.65 0.000 
        |      |         |      | 36 0.029 0.032 117.82 0.000 

       
       Source: Authors’ Calculation using Eviews12 
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Table: 1.4 Autocorrelation Function of S&P 500 Index 
Included observations: 5967 after adjustments  

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 
       
              *|      |        *|      | 1 -0.103 -0.103 63.447 0.000 

        |      |         |      | 2 -0.008 -0.019 63.848 0.000 
        |      |         |      | 3 0.010 0.007 64.471 0.000 
        |      |         |      | 4 -0.024 -0.023 68.012 0.000 
        |      |         |      | 5 -0.012 -0.017 68.895 0.000 
        |      |         |      | 6 -0.036 -0.040 76.589 0.000 
        |      |         |      | 7 0.031 0.023 82.367 0.000 
        |      |         |      | 8 -0.030 -0.026 87.622 0.000 
        |      |         |      | 9 0.042 0.037 98.034 0.000 
        |      |         |      | 10 -0.003 0.002 98.089 0.000 
        |      |         |      | 11 -0.010 -0.008 98.663 0.000 
        |      |         |      | 12 0.039 0.036 107.90 0.000 
        |      |         |      | 13 -0.011 -0.001 108.67 0.000 
        |      |         |      | 14 -0.002 -0.004 108.71 0.000 
        |      |         |      | 15 -0.060 -0.059 130.54 0.000 
        |      |         |      | 16 0.068 0.056 158.40 0.000 
        |      |         |      | 17 -0.007 0.007 158.67 0.000 
        |      |         |      | 18 -0.032 -0.029 164.94 0.000 
        |      |         |      | 19 -0.002 -0.016 164.97 0.000 
        |      |         |      | 20 0.006 0.007 165.17 0.000 
        |      |         |      | 21 -0.015 -0.019 166.53 0.000 
        |      |         |      | 22 -0.010 -0.008 167.12 0.000 
        |      |         |      | 23 0.004 -0.005 167.20 0.000 
        |      |         |      | 24 -0.009 -0.006 167.69 0.000 
        |      |         |      | 25 -0.006 -0.012 167.91 0.000 
        |      |         |      | 26 -0.013 -0.018 168.97 0.000 
        |      |         |      | 27 0.030 0.033 174.42 0.000 
        |      |         |      | 28 -0.006 -0.004 174.61 0.000 
        |      |         |      | 29 0.011 0.009 175.30 0.000 
        |      |         |      | 30 0.006 0.007 175.51 0.000 
        |      |         |      | 31 -0.014 -0.004 176.69 0.000 
        |      |         |      | 32 0.004 -0.003 176.79 0.000 
        |      |         |      | 33 -0.013 -0.013 177.81 0.000 
        |      |         |      | 34 -0.047 -0.049 191.25 0.000 
        |      |         |      | 35 0.015 0.010 192.66 0.000 
        |      |         |      | 36 0.029 0.025 197.69 0.000 

       
       Source: Authors’ Calculation using Eviews12 

 
 

Table: 1.5: Unit root Test (Augmented Dickey-Fuller test) and Phillips-Perron test of DJIA index 
Null Hypothesis: DJIA_LOG_RETURNS has a unit root 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -85.74128  0.0001* 

Test critical values: 1% level  -3.959575  
 5% level  -3.410557  
 10% level  -3.127051  
     
          

        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -85.69481  0.0001* 

Test critical values: 1% level  -3.959575  
 5% level  -3.410557  
 10% level  -3.127051  
     
      
 
 
 
 

    Source: Authors’ Calculation using Eviews12 
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Table: 1.6: Unit root Test (Augmented Dickey-Fuller test) and Phillips-Perron test of ATX index 
Null Hypothesis: ATX_INDEX_LOG_RETURNS has a unit root 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -72.38189  0.0000* 

Test critical values: 1% level  -3.959575  
 5% level  -3.410557  
 10% level  -3.127051  
     
      

     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -72.38968  0.0000* 

Test critical values: 1% level  -3.959575  
 5% level  -3.410557  
 10% level  -3.127051  
     
     Source: Authors’ Calculation using Eviews12 

Table: 1.7: Unit root Test (Augmented Dickey-Fuller test) and Phillips-Perron test of S&P 500 index 
Null Hypothesis: S_P_500_INDEX_LOG_RETURNS has a unit root 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -85.72656  0.0001* 

Test critical values: 1% level  -3.959575  
 5% level  -3.410557  
 10% level  -3.127051  
     
      
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -86.06795  0.0001* 

Test critical values: 1% level  -3.959575  
 5% level  -3.410557  
 10% level  -3.127051  
     
     Source: Authors’ Calculation using Eviews12 

 
Table 1.2 shows the Autocorrelation Function Plot of djia Index, Table 1.3 shows the Autocorrelation 

Function Plot of ATX Index andTable 1.4 shows the Autocorrelation Function Plotof S&P 500 Index. 
Autocorrelation Function Plot is a visual representation of ACF and PACF of a time series. Here statistical 
properties changes over time, it indicating that there is no trend hence the data isstationary. Table 1.5shows 
the Unit root Test (Augmented Dickey-Fuller test) and Phillips-Perron test of DJIA index, Table 1.6 shows the 
Unit root Test (Augmented Dickey-Fuller test) and Phillips-Perron test of ATX index and Table 1.7 shows the 
Unit root Test (Augmented Dickey-Fuller test) and Phillips-Perron test of S&P 500 index. The p values of 
Augmented Dickey-Fuller test and Phillips-Perron test are less than 0.05which leads to reject the null 
hypothesis hence, the sample data were found to be stationary since the probability values are significant at 
10%, 5%, and 1% levels. 
 
Testing for ARCH Effect: 

It is crucial to look at the residuals for signs of heteroscedasticity. If conditional heteroskedasticity is 
present, the results might be deceiving if it is not taken into consideration. (SOKPO, IOREMBER, & USAR, 
Inflation and Stock Market Returns Volatility: Evidence from the Nigerian Stock Exchange 1995Q1-2016Q4: An 
E-GARCH Approach, 2018). The ARCH Lagrange Multiplier (LM) test is employed to determine whether 
heteroscedasticity exists in the return series' residual. Testing for conditional heteroskedasticity is crucial 
since if it's omitted adopting GARCH-type models would be improper. 
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Table 1.8: Heteroskedasticity Test: ARCH 
DJIA index 

Heteroskedasticity Test: ARCH 
F-statistic 495.1899     Prob. F(1,5963) 0.0000 
Obs*R-squared 457.3739     Prob. Chi-Square(1) 0.0000 

 
ATX index 

Heteroskedasticity Test: ARCH 
F-statistic 303.9614     Prob. F(1,5963) 0.0000 
Obs*R-squared 289.3156     Prob. Chi-Square(1) 0.0000 

 
S&P 500 index 

Heteroskedasticity Test: ARCH 
F-statistic 473.2127     Prob. F(1,5963) 0.0000 
Obs*R-squared 438.5675     Prob. Chi-Square(1) 0.0000 

Source: Authors’ Calculation using Eviews12 
 

Table 1.8 shows the result of the ARCH-LM test for DJIA Index, ATX Index and S&P 500 Index.It inferred 
that data is highly significant. Theprobability of F-statistic (0.0000) shows that p value is less than0.05; the null 
hypothesis (i.e., no ARCH effect) is rejected at 1% level.The results support to estimate GARCH family models 
since, indicating the existence of ARCH effects in the residuals of time series models.This indicates the series 
under consideration is variable, requiring volatility modeling to account for volatility in the model. 

 
Table 1.9: Selecting an appropriate model  

DJIA Index 
Estimated model Akaike info criterion Schwartz criterion  Log Likelihood 

GARCH/TARCH -6.576149 -6.569417 19622.65 
EGARCH -6.610309 -6.602455 19725.55 
PARCH -6.614454 -6.605478 19738.92 

ATX Index 
Estimated model Akaike info criterion Schwartz criterion  Log Likelihood 

GARCH/TARCH -6.103017 -6.096285 18211.3 
EGARCH -6.1193 -6.111446 18260.87 
PARCH -6.122116 -6.11314 18270.27 

S&P 500 Index 
Estimated model Akaike info criterion Schwartz criterion  Log Likelihood 

GARCH/TARCH -6.480437 -6.473705 19337.14 
EGARCH -6.519938 -6.512084 19455.97 
PARCH -6.523629 -6.514653 19467.98 

Source: Authors’ Calculation using Eviews12 
 
Table 1.9 Depicts three models of GARCH family. PGARCH with Student t's Distribution has the lowest 

Akaike info criterion and Schwartz criterion apart from that maximum Log Likelihood when compared to the 
other two. As a result, this model is thought to be the best one. The results of the selected PARCH Model for the 
DJIA index, ATX index, and S&P 500 Index are shown in the table below. 
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Table 1.10: PGARCH with Student's t distribution Error Construct of DJIA index 
Dependent Variable: DJIA_LOG_RETURNS  
Method: ML ARCH - Student's t distribution (BFGS / Marquardt steps) 
Date: 10/05/23   Time: 18:06  
Sample (adjusted): 1/05/2000 9/21/2023  
Included observations: 5966 after adjustments 
Convergence not achieved after 500 iterations 
Coefficient covariance computed using outer product of gradients 
Presample variance: backcast (parameter = 0.7) 
@SQRT(GARCH)^C(7) = C(3) + C(4)*(ABS(RESID(-1)) - C(5)*RESID( 
        -1))^C(7) + C(6)*@SQRT(GARCH(-1))^C(7) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.000410 9.48E-05 4.327361 0.0000 

DJIA_LOG_RETURNS(-1) -0.039604 0.013264 -2.985820 0.0028 
     
      Variance Equation   
     
     C(3) 0.000134 5.99E-05 2.243925 0.0248 

C(4) 0.081998 0.005208 15.74337 0.0000 
C(5) 0.999956 8.11E-07 1233030. 0.0000 
C(6) 0.910789 0.005138 177.2819 0.0000 
C(7) 1.090693 0.085345 12.77980 0.0000 

     
     T-DIST. DOF 7.339247 0.651054 11.27287 0.0000 
     
     R-squared 0.006317     Mean dependent var 0.000190 

Adjusted R-squared 0.006150     S.D. dependent var 0.011824 
S.E. of regression 0.011788     Akaike info criterion -6.614454 
Sum squared resid 0.828672     Schwarz criterion -6.605478 
Log likelihood 19738.92     Hannan-Quinn criter. -6.611336 
Durbin-Watson stat 2.126805    

     
     Source: Authors’ Calculation using Eviews12 

 

Table 1.11: PGARCH with Student's t distribution Error Construct of ATX index 
Dependent Variable: ATX_INDEX_LOG_RETURNS 
Method: ML ARCH - Student's t distribution (BFGS / Marquardt steps) 
Date: 10/05/23   Time: 18:03  
Sample (adjusted): 1/05/2000 9/21/2023  
Included observations: 5966 after adjustments 
Convergence achieved after 56 iterations 
Coefficient covariance computed using outer product of gradients 
Presample variance: backcast (parameter = 0.7) 
@SQRT(GARCH)^C(7) = C(3) + C(4)*(ABS(RESID(-1)) - C(5)*RESID( 
        -1))^C(7) + C(6)*@SQRT(GARCH(-1))^C(7) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.000470 0.000129 3.655692 0.0003 

ATX_INDEX_LOG_RETURNS(-1) 0.046941 0.013285 3.533262 0.0004 
     
      Variance Equation   
     
     C(3) 0.000108 7.16E-05 1.511677 0.1306 

C(4) 0.087093 0.009205 9.461983 0.0000 
C(5) 0.565449 0.080414 7.031717 0.0000 
C(6) 0.899673 0.008305 108.3341 0.0000 
C(7) 1.244175 0.145618 8.544087 0.0000 

     
     T-DIST. DOF 9.134306 0.979259 9.327775 0.0000 
     
     R-squared 0.003380     Mean dependent var 0.000162 

Adjusted R-squared 0.003213     S.D. dependent var 0.014301 
S.E. of regression 0.014278     Akaike info criterion -6.122116 
Sum squared resid 1.215837     Schwarz criterion -6.113140 
Log likelihood 18270.27     Hannan-Quinn criter. -6.118998 
Durbin-Watson stat 1.963762    

     
     Source: Authors’ Calculation using Eviews12 
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Table 1.12: PARCH with Student's t distribution Error Construct of S&P 500 index 
Dependent Variable: S_P_500_INDEX_LOG_RETURNS 
Method: ML ARCH - Student's t distribution (BFGS / Marquardt steps) 
Date: 10/05/23   Time: 17:58  
Sample (adjusted): 1/05/2000 9/21/2023  
Included observations: 5966 after adjustments 
Convergence achieved after 106 iterations 
Coefficient covariance computed using outer product of gradients 
Presample variance: backcast (parameter = 0.7) 
@SQRT(GARCH)^C(7) = C(3) + C(4)*(ABS(RESID(-1)) - C(5)*RESID( 
        -1))^C(7) + C(6)*@SQRT(GARCH(-1))^C(7) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.000446 9.76E-05 4.571438 0.0000 

S_P_500_INDEX_LOG_RETURNS(-1) -0.048456 0.013447 -3.603385 0.0003 
     
      Variance Equation   
     
     C(3) 0.000245 9.73E-05 2.516566 0.0119 

C(4) 0.090935 0.005119 17.76382 0.0000 
C(5) 0.999863 5.75E-06 173928.5 0.0000 
C(6) 0.909093 0.005284 172.0343 0.0000 
C(7) 0.978762 0.077314 12.65962 0.0000 

     
     T-DIST. DOF 7.277275 0.591526 12.30255 0.0000 
     
     R-squared 0.007257     Mean dependent var 0.000189 

Adjusted R-squared 0.007091     S.D. dependent var 0.012414 
S.E. of regression 0.012370     Akaike info criterion -6.523629 
Sum squared resid 0.912628     Schwarz criterion -6.514653 
Log likelihood 19467.98     Hannan-Quinn criter. -6.520511 
Durbin-Watson stat 2.110460    

          Source: Authors’ Calculation using Eviews12 
 
Above table are representing the PARCH model with Student's t distribution error construct of DJIA 

Index, ATX Index and S&P 500Index.Since Probabilities are lower than 0.05, the constant (C) isconsidered 
significant.  

We can forecast the volatility of the USA Stock Exchange and Austria Composite indices using the 
aforementioned methodology using a data set of 5966 days. The charts below are intended to demonstrate the 
anticipated uneven price changes of the USA and Austria Stock Exchange Composite index throughout the 
corresponding time periods: 
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Graph 1.3: Estimating volatility patterns using PARCH models ofDJIA Index 

Source: Authors’ Calculation using Eviews12 
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Forecasting volatility using Generalized Autoregressive Conditional Heteroscedasticity (GARCH) 
models is a common approach in financial econometrics. GARCH models help capture the time-varying nature 
of volatility in financial time series data. The need for the modeling and forecasting volatility is because investor 
are not interested in the average returns of a stock but also its risk. Market investors and speculators need 
information to analyze the gains or losses from the erratic behavior of the financial assets. Analysis volatility is 
helpful as it informs investor a measure of the risk involved in holding as assets. 
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Source: Authors’ Calculation using Eviews12 
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To forecast variance using financial time series data, we can use models like Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH), which is specifically designed for volatility 
forecasting.Forecast variance, also known as forecast error or prediction error, is a measure of the difference 
between the predicted or forecasted values and the actual observed values in a forecasting model. It quantifies 
how well or poorly a forecasting model is performing by indicating the extent to which the predictions deviate 
from the actual outcomes. Forecast variance is a critical metric for assessing the accuracy and reliability of a 
forecasting model.Lower forecast variance, as indicated by lower values of RMSE, MAE, or percentage error, 
suggests that the forecasting model is more accurate. High forecast variance, on the other hand, indicates that 
the model's predictions deviate significantly from the actual outcomes, implying lower accuracy.The 
forecasting evaluation of the DJIA index from USA stock market, ATX index from Austria stock market and S&P 
500 index from USA stock market series returns is highlighted in graph 1.3, 1.4 and 1.5 respectively for the 
sample period.In USA stock market both the index high volatility is visible in the graphical trend in 2008 due 
to global financial crisis.  A high volatility can be seen at the year 2020. This time Pandemic Covid 19 erupted 
the US.On the other handATX index has also high volatility in 2008 and 2020 but the volatility at both the times 
was almost equal. Results reviled that the return on financial assets is stable but showsintense volatility in 
selected all financial sample data series.  

 
7. Conclusions 

The paper has been developed into the intricate world of stock market volatility prediction, focusing 
on the indices of two distinct but economically significant countries, the United States and Austria. Through the 
application of advanced GARCH models, including GARCH/TARCH, EGARCH, and PARCH, this research sought 
to illuminate the underlying patterns and behavior of these financial markets. The analysis centered on log 
returns derived from the DJIA index, ATX Index, and S&P 500 Index, spanning from January 3, 2000, to 
September 21, 2023. One crucial aspect of this investigation was the assessment of stationarity in the data 
series, as it forms the foundation upon which econometric models are built. The Autocorrelation Function Plot, 
Augmented Dickey Fuller test, and Phillips-Perron test all converged in their findings, indicating that the 
sample data were stationary. This essential confirmation allowed us to proceed with confidence in our 
modeling endeavors. Moreover, the identification of heteroscedasticity, a key element in understanding stock 
market volatility, was carried out using the ARCH Lagrange Multiplier (LM) test.  

The compelling results of this test revealed the presence of ARCH effects in the residuals of our time 
series models. This discovery provided further support for the use of GARCH family models in our pursuit of 
accurate volatility forecasting. Among the three GARCH models considered, GARCH/TARCH, EGARCH, and 
PARCH, the selection of the most appropriate model hinged on several criteria, including the Akaike 
information criterion, Schwartz criterion, and maximum log likelihood. Remarkably, the PARCH model 
emerged as the favored choice, demonstrating its superiority in capturing the complexities of the data and 
offering a robust foundation for predicting stock market volatility. The results obtained through the application 
of the PARCH model, as showcased in Table 1.10 to 1.13, provide valuable insights into the dynamics of the 
DJIA Index, ATX Index, and S&P 500 Index. These findings unveil the intricate interplay of factors influencing 
stock market volatility, shedding light on the specific characteristics of each index and their responses to 
economic events, policy changes, and global influences.  

In essence, this research represents a comprehensive endeavor to contribute to the understanding of 
stock market behavior in the USA and Austria. By harnessing advanced GARCH models and rigorous statistical 
analyses, we have advanced our comprehension of volatility patterns and their underlying drivers. These 
insights are not only valuable for investors and financial professionals but also for policymakers and analysts 
seeking to make informed decisions in the ever-evolving landscape of global financial markets. Furthermore, 
the methodology and techniques employed in this study can serve as a valuable reference for future research 
in the field of financial econometrics and volatility forecasting.  

As the world of finance continues to evolve and grow increasingly complex, the need for accurate and 
robust models to predict stock market volatility becomes ever more pressing. The findings and methodologies 
presented in this paper can be seen as a solid foundation upon which to build future investigations, refining 
our ability to anticipate market movements and make informed decisions in an uncertain financial landscape. 
In closing, this research not only contributes to the body of knowledge in financial econometrics but also 
underscores the importance of modeling stock market behavior with precision and diligence. The utilization of 
advanced GARCH models and rigorous statistical tests has allowed us to unlock valuable insights into the 
dynamics of the US and Austrian stock markets, ultimately advancing our understanding of the intricate world 
of stock market volatility prediction. 
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